Выбор режимов резки при работе на фрезерно-гравировальном оборудовании. Расчет скоростей при токарной обработке Режим резки а также контролировать

Процесс кислородной резки основан на свойстве горения металла в струе кислорода и удаление этой струей образующихся оксидов.

Перед началом данного процесса следует ознакомится с техникой кислородной резки .

Процесс резки начинается с нагрева металла до температуры воспламенения, развивающееся при этом тепло реакции сгорания металла, способствует дальнейшему нагреву соседних частиц до температуры воспламенения, благодаря чему режущая струя кислорода непрерывно проникает на всю глубину и прорезает его насквозь, при этом часть металла вдоль плоскости реза обращается в окислы металла и выдувается струей кислорода.

Для устойчивого протекания процесса резки необходимо соблюдать следующие условия:

1.Температура горения металла должна быть ниже температуры плавления металла; в противном случае металл расплавится и стечет раньше, чем успеет сгореть.

2.Образующиеся при резке шлаки, состоящие преимущественно из окислов металла, должны быть легкоплавкими и жидкотекучими, и стекать под действием струи режущего кислорода .

3.Теплота выделяемая реакцией сгорания металла, должна быть достаточной, чтобы обеспечить непрерывное продолжение начавшегося процесса резки.

4.Теплопроводность металла должна быть достаточно малой, чтобы предупредить большие потери тепла от места резки на бесполезный подогрев всей массы металла.

5.Температура плавления металла должна быть выше точки плавления окислов; в противном случае образующиеся в процессе резки окислы не смогут отделяться от основного металла, не будет непрерывным. Этим условиям удовлетворяет железо (сталь), титан (и его сплавы), и марганец.

Разрезаемость стали и влияние углерода и легирующих элементов на кислородную резку сталей

Способность металлов подвергаться кислородной резке зависит от того, насколько полно удовлетворяется приведенные выше условия.

Влияние углерода на разрезаемость

Металл Характеристика разрезаемости
Низкоуглеродистая сталь При содержании углерода до 0,3% разрезаемость хорошая
Среднеуглеродистая сталь С увеличением содержания углерода с 0,3% до 0,7% резка осложняется
Высокоуглеродистая сталь При содержании углерода свыше 0,7% до 1% резка затруднительна и требуется предварительный подогрев стали до температуры 300-700°С. При содержании углерода более 1-1,2% резка невозможна (без применения флюса)

Марганец (Mn) - облегчает резку. Ухудшает резку при содержании более 4%.

Кремний (Si) - стали, при содержании углерода до 0,2 % и Si до 4 %, режутся хорошо.

Хром (Сг) - стали с содержанием Сг до 1,5% режутся хорошо, при повышении содержания резка затрудняется и при содержании свыше 8-10% - кислородная резка невозможна (здесь применяется кислородно-флюсовая или воздушно-плазменная резка).

Никель (Ni) - хорошо режутся стали с содержанием Ni до 0,7%, если содержание углерода в стали не более 0,5%, то она режется хорошо с содержанием Ni до 4-7%, при содержании более 34% - резка ухудшается.

Медь (Си) - стали с содержанием Си до 0,7% режутся хорошо.

Молибден (Мо) - обычные молибденовые стали режутся удовлетворительно при содержании до 0,25-0,3%, резка не затрудняется, но происходит закалка кромки реза.

Вольфрам (W) - стали с содержанием W до 10% режутся хорошо и удовлетворительно, при содержании свыше 10% резка сильно затруднена.

Сера и Фосфор (S и Р) - при содержании этих элементов в пределах, предусмотренных стандартами, - на резку не влияют.

Основные показатели режима кислородной резки :

  • мощность пламени
  • давление режущего кислорода
  • скорость резки

Мощность пламени зависит разрезаемого металла, состава и состояния стали (прокат, поковка, отливка). При ручной резке, из-за неравномерности перемещения резака, обычно в 1,5-2 раза увеличивают мощность пламени по сравнению с машинной резкой. При резке литья, т.к. поверхность отливки обычно покрыта формовочной землей и пригаром, мощность пламени увеличивается в 3-4 раза.

Для резки сталей толщиной до 300 мм применяют нормальное пламя, а при толщине металла свыше 400 мм целесообразно использовать подогревающее пламя с избытком ацетилена (науглероживающее) для увеличения длины факела (помимо применения более высокого давления кислорода) и прогрева нижней части реза.

Выбор давления режущего кислорода зависит, прежде всего от толщины разрезаемого металла и чистоты кислорода. При более высоком давлении используются мундштуки с большим диаметром канала режущего кислорода. Для каждого мундштука (наружного и внутреннего) существует оптимальная величина давления при изменении которой в ту или иную сторону, качество реза ухудшается и изменяется скорость резки. Соответственно может увеличиваться и расход кислорода на 1 пог. м. По указанным причинам следует строго руководствоваться эксплуатационной документацией на ручные и машинные резаки.

Скорость резки должна соответствовать скорости оксидирования (горения) металла по толщине разрезаемого листа.

При замедленной скорости происходит оплавление верхних кромок разрезаемого листа и расплавленные оксиды (шлаки, грат) из разреза вылетают в виде пучка искр в направлении реза.

При слишком большой скорости, вылет искр из разреза слабый и направлен в обратную сторону движения резака. След реза на вертикальной поверхности значительно «отстает» от вертикали. Возможно непрорезание металла.

При оптимальной скорости резки поток искр с обратной стороны разрезаемого листа сравнительно спокоен и направлен почти параллельно кислородной струе. След реза лишь немного «отстает» от вертикали, шероховатость реза незначительна и грат легко отделяется от нижней кромки реза. Рез ровный.

Статья разработана при поддержке сайта www.pgn.su . Это официальный сайт НПП ПромГрафит, которые предлагают современные уплотнительные материалы и термоизоляцию собственного отечественного производства.

Основными показателями режима кислородной резки являются:

Вид горючего газа;
- мощность подогревающего пламени;
- давление режущего кислорода;
- расход режущего кислорода;
- давление горючего газа;
- скорость резки.

Все эти показатели связаны с толщиной разрезаемого металла, химического состав стали, чистоты кислорода и конструкции резака.

Вид горючего газа

При газовой резке происходит подогрев металла только до температуры горения, поэтому могут использоваться все горючие газы.
Однако газы, имеющие более низкую температуру пламени, требуют большего времени на подогревметалла перед резкой. Ацетилен обеспечивает получение пламени с самой высокой температурой. Поэтому нагрев металла в начале резки с использованием ацетиленового пламени происходит значительно быстрее, чем с использованием других горючих газов. Однако при резке металла большой толщины и длинных резов относительные потери времени не таквелики, поэтому горючие газы – заменители, имеющие более низкую стоимость, также широко применяются при газовой резке. Ацетиленовое пламя наиболее эффективно использовать при газовой резке тонкого металла ив случае большого количества коротких резов, требующих подогрева детали.

Мощность подогревающего пламени

Мощность подогревающего пламени выбираетсяв зависимости от толщины разрезаемого металла. При резке сталей используется нормальное пламя. Мощность пламени определяется номером наружного наконечника.

При ручной резке обычно используется 2 номера наружного наконечника:

– для металла толщиной не более 50 мм;

Для металла толщиной 50 – 200 мм

Давление режущего кислорода

Давление режущего кислорода выбирается в зависимости от толщины разрезаемого металла. Величина давлениярежущего кислорода указывается нанаружном наконечнике, выбираемомв зависимости от толщины разрезаемого металла. Чем больше толщина металла, тем больше должно быть давление режущего кислорода.

Если давление режущего кислорода слишком маленькое, то струя кислорода не сможет выдуть шлаки с места реза и металл не будет прорезан на всю толщину.

Если давление режущего кислорода слишком большое, то расход его возрастает и разрез получается недостаточно чистым.

Расход режущего кислорода

Расход режущего кислорода должен быть достаточен для окисления линии реза. Расход кислорода зависит от величины давления режущего кислорода и диаметра отверстия внутреннего мундштука, которые выбираются в зависимости от толщины металла.

Давление горючего газа

Давление горючего газа устанавливается в пределах0,5 – 1,0 бар в зависимости от толщины металла. Чем больше толщина металла, тем больше давление горючего газа.

Скоростькислородной резки

Скорость резки должна соответствовать скорости окисления металла.

При малой скорости происходит плавление верхней кромки реза,а при большой скорости образуются не прорезанные участки и возможно нарушение непрерывности резки.

Скорость резки, в основном, зависит от толщины разрезаемого металла. А также на скорость резки оказывают влияние:

  • степень механизации процесса (ручная или машинная резка);
  • форма линии реза (прямолинейная или фигурная);
  • качество поверхности реза (разделочная, заготовительная с припуском на механическую обработку, заготовительная под сварку, чистовая)

Установлено, что уменьшение чистоты кислорода на 1% снижает скорость резки в среднем на 20%. Поэтому применять кислород чистотой ниже 99% нецелесообразно из-за снижения скорости и качества поверхности реза. Кислород должен быть чистотой 99,5% и более.

На практике необходимую скорость резки можно определить по направлению потока искр и шлака при резке.

1. Скорость резки мала; 2. Оптимальная скорость резки; 3. Скорость резки велика (3)

Основные показатели режима резки - это давление режущего кислорода и скорость резки, которые зависят (для данного химического состава стали) от толщины разрезаемой стали, чистоты кислорода и конструкции резака.

Давление режущего кислорода имеет большое значение для резки. При недостаточном давлении струя кислорода не сможет выдуть шлаки из места реза и металл не будет прорезан на всю толщину. При слишком большом давлении кислорода расход его возрастает, а разрез получается недостаточно чистым.

Установлено, что уменьшение чистоты кислорода на 1% снижает скорость резки в среднем на 20%. Применять кислород чистотой ниже 95% нецелесообразно из-за снижения скорости и качества поверхности реза. Наиболее целесообразно и экономически оправдано применение, особенно при машинной кислородной резке, кислорода чистотой 99,5% и более.

На скорость резки также оказывают влияние степень механизации процессу (ручная или машинная резка), форма линии реза (прямолинейная или фигурная) и качество поверхности реза (разделочная, заготовительная с припуском на механическую обработку, заготовительная под сварку, чистовая).

Скорость ручной резки можно кроме таблицы также определить по формуле

где δ - толщина разрезаемой стали, мм.

Если скорость резки мала, то будет происходить оплавление кромок; если скорость слишком велика, то будут образовываться непрорезанные участки из-за отставания кислородной струи, непрерывность резки нарушится.

Режимы машинной чистовой резки деталей с прямолинейными кромками без последующей механической обработки под сварку приведены в табл. 20. Для фигурной резки скорость берется в пределах, указанных в таблице для резки двумя резаками. При заготовительной резке скорость принимается на 10 - 20% выше указанной в таблице.

Данные таблицы учитывают, что чистота кислорода - 99,5%. При меньшей чистоте расход кислорода и ацетилена возрастает, а скорость резки уменьшается; эти величины определяются умножением на поправочный коэффициент, равный:


При резке листов толщиной ∼ 100 мм экономически оправдано применение подогревающего пламени с избытком кислорода для возможно более быстрого нагрева поверхности металла.

Основной принцип действия фрезерного станка с ЧПУ

Фрезерование заготовок происходит при взаимодействии режущего инструмента с материалом. Степень вхождения зубьев фрезы в материал зависит от угла заострения. Чем меньше угол - тем меньше сила резания.

Выбор диаметра фрезы определяется шириной и глубиной фрезерования. Оба параметра задаются в чертежах и соответствуют размеру заготовки. При необходимости изготовления нескольких заготовок, параметры умножаются на число необходимых деталей.

Во время работы на фрезерных станках с ЧПУ фреза осуществляет вращательные движения, постепенно снимающие необходимые слои материала с заготовки, которая, в свою очередь совершает поступательное движение относительно фрезы. В зависимости от конструкции станка, либо стол движется в отношении фрезы, либо фреза во втором - фреза в отношении стола.

В процессе производства задействованы два элемента - фреза и заготовка. Однако все манипуляции производятся фрезой. Управление осуществляется при помощи компьютера или другого вычислительного устройства.

Основные режимы

Фрезерные станки имеют несколько основных режимов работы, параметры которых регулируются в зависимости от материала. Основные режимы работы включают в себя: раскрой, выборку и гравировку.

Обозначенный режим работы используется для нарезания заготовок и придания изделию форм. Работа в этом режиме выполняется с использованием спиральной 1-заходной или 2-заходной фрезы.

Гравировка включает в себя нанесение на поверхность материала рисунков или надписей с использованием гравера.

Выбор фрезы

Для успешной работы необходимо правильно выбрать фрезу. Выбор фрезы определяется двумя параметрами - глубиной и шириной фрезерования режущей поверхности. Обычно эти параметры указываются в чертежах для заготовок и зависят от планируемого размера деталей.

Глубина резанья - показатель, определяющий толщину материала, снимаемого фрезой на один проход. При обработке твёрдых материалов фреза совершает несколько проходов, тогда поверхность материала получается более гладкой. Тем не менее, при небольшой глубине фреза производит всего один проход. Ширина фрезерования - измеряется размером заготовки. Оба параметра задаются в чертежах.

Под скоростью резания понимается путь, который проходит фреза во время работы в течение одной минуты. Путь принято обозначать в метрах. Оптимальная скорость рассчитывается исходя из дины окружности фрезы и количества зубьёв. Общую длину окружности фрезы умножают на число её зубьев и количество совершаемых оборотов в минуту. Для получения метрического результата полученное значение необходимо разделить на 1000, по количеству миллиметров в метрах.

Оптимальную скорость для разных материалов определяют согласно справочным таблицам. Скорость резки во время работы станка зависит от надёжности фрезы, поэтому в таблицах приводятся максимально допустимые значения оборотов станка, при которых невозможно повреждение фрезы.

Перемещение шпинделя

Фреза передвигается в трёх направлениях, согласно координатной оси, где X - соответствует поперечному перемещению шпинделя, Y - продольному, а Z - вертикальному направлению.

Основные параметры резания - скорость подачи и вращения шпинделя. Подача в одну минуту означает величину перемещения, совершаемую шпинделем за одну минуту. Эта величина измеряется в миллиметрах. Её рассчитывают исходя из количества зубьев фрезы и оборотов, совершаемых в минуту. Таким образом подача в одну минуту равна подаче на один зуб фрезы, умноженной на число зубьев и оборотов в минуту.

Выбор режима работы

Выбор режима обработки зависит от материалов, мощности станка, и скорости обработки. Чем выше мощность станка, тем выше скорость получения детали, что отражается на интенсивности производства. Но слишком высокая скорость снижает качество обработки, поэтому выбор скорости определяется свойствами материала и наличием системы охлаждения станка и уборки стружки, а также тип фрезы. Основные данные относительно скоростей и глубины подачи резания и фрезеровки содержатся в прилагающихся таблицах. В таблице указываются максимально допустимые значения для обозначенных видов материалов, поскольку значение, превышающее обозначенное число может привести либо к порче фрезы, либо заготовки.

Материал

Режим работы

Тип фрезы и параметры

Частота, об/мин

Подача (XY), мм/сек

Подача (Z), мм/сек

Примечание

Гравировка V-гравером

Один проход 5 мм

Фрезеровка

1-зубая фреза D1=3 или 6 мм

Фрезерование встречное.
Один проход не более 3мм.
Использование СОЖ

ПВХ до 10 мм

Раскрой
Фрезеровка

1-зубая фреза D1=3 или 6 мм

Встречное фрезерование.

2-слойный пластик

Гравировка

Плоский гравер

0,3-0,5 мм за 1 проход.
Max шаг 50% от диаметра режущий части.

Композит

Фрезеровка

1-зубая фреза D1=3 или 6 мм

Встречное фрезерование

Дерево
ДСП

Раскрой
Фрезеровка

1-зубая фреза D1=3 или 6 мм

Встречное фрезерование.
5 мм за проход.

Max 10 мм за проход.

Гравировка

2-зубая сферическая фреза D1=3 мм

Max 5 мм за проход.

Плоский гравер D1=3 или 6 мм

Max 5 мм за проход в зависимости от материала
Max Шаг не более 50% диаметра режущий части.

V-гравировка

V-образный гравер D1=32 мм., a=90, 60 град., D2=0.2 мм

Max 3 мм за проход.

Раскрой
Фрезеровка

1-зубая фреза с удалением стружки вниз d=6 мм

Max 10 мм за проход.
При выборке шаг не более 45% от диаметра режущий части.

2-зубая компрессионная фреза D1=6 мм

Max 10 мм за проход.

Латунь
ЛС 59
Л-63
Бронза
БрАЖ

Раскрой
Фрезеровка

2-зубая фреза D1=2 мм

Max 0.5 мм за проход.

Гравировка

Гравер a=90, 60, 45, 30 град.

По 0.3 мм за проход.
Max шаг не более 50% от диаметра режущей части.
Желательно использовать СОЖ.

Дюралюминий, Д16, АД31

Раскрой
Фрезеровка

Фреза 1 зубая d=3 или 6 мм

По 0.2-0.5 мм за проход.
Желательно использовать СОЖ.

Гравировка

Гравер A=90, 60, 45, 30 град.

По 0.5 мм за проход.
Шаг не более 50% от диаметра режущий части.